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Macropolyhedral boron-containing cluster chemistry.
Characterisation of rigid 77-atom [Pt(B18H20)2]

22 dianion isomers
and an unusual metallaborane homophilic interaction
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Reaction of [Pt(cod)Cl2] (cod = cycloocta-1,5-diene) with
[NEt4]2[anti-B18H20] or with [syn-B18H22] and tmnda
(tmnda = N,N,N9,N9-tetramethylnaphthalene-1,8-diamine)
resulted in the generation of [Pt(anti-B18H20)2]

22 or [Pt(syn-
B18H20)2]

22 dianions, for which intramolecular steric crowding
imposes rigid slab structures, and which have unusual
intimately packed anion-layer structures in their salts in the
solid state.

In boron-containing cluster chemistry there appears, at first
sight, to be a natural barrier to cluster size at the twelve-vertex
icosahedron. This twelve-vertex barrier may be crossed by using
cluster ‘puncture and expansion’ reactions, but at present this
approach has an effective practical barrier at the fourteen-vertex
1 :6 :6 :1 closed deltahedron.1 Alternatively, the intimate fusion
of one or more single clusters to generate ‘macropolyhedral’
extended contiguous multicluster assemblies can effectively
shift the barrier to infinity. Here, the larger fused-cluster
assemblies so generated offer possibilities of interesting cluster
interactions, either (a) intramolecular, for example between
subclusters bound in very closely adjacent positions in one mol-
ecule, or (b) intermolecular, for example between molecules that
have large or complementary van der Waals surfaces or com-
plementary polar domains. We here report that the new 77-
atom platinaborane dianions [Pt(anti-B18H20)2]

22 and [Pt(syn-
B18H20)2]

22 have interesting structural features resulting from
both these structural effects. The parent 40-atom macropolyhe-
dral binary borane precursors, anti-B18H22 and syn-B18H22, were
structurally characterised some time ago.2

Typically, reaction between [NEt4]2[anti-B18H20] (240 µmol)
and [Pt(cod)Cl2] (120 µmol) (cod = cycloocta-1,5-diene) in
CH2Cl2 solution at room temperature for 18 h, followed
by repeated chromatographic separation (TLC, silica gel,
CH2Cl2–MeCN mixtures), afforded [NEt4]2[Pt(anti-B18H20)2] 1
as a mildly air- and temperature-sensitive orange solid (54%).
A similar reaction between syn-B18H22 (240 µmol), N,N,N9,N9-
tetramethylnaphthalene-1,8-diamine (tmnda) (480 µmol) and
[Pt(cod)Cl2] (120 µmol), and similar work-up, similarly yielded
the orange solid [Htmnda]2[Pt(syn-B18H20)2] 2 (51%). Each of
compounds 1 and 2 has been characterised by a single-crystal
X-ray diffraction analysis (Fig. 1).* In each compound the
anion has crystallographic inversion symmetry, the metal atoms
being on the inversion centre. The syn-B18 residue is chiral 7 and
in compound 2 the anion is the (1)(2) diastereoisomer; other
minor products that are revealed chromatographically may well
include the (1)(1)/(2)(2) racemate, although it could be that
the extreme steric intramolecular interactions in these species
(see below) preferentially dictate the observed (1)(2) diastereo-
isomeric form.

Each of the isomeric [PtB36H40]
22 dianions in compounds 1

and 2 can be viewed as two nineteen-vertex {PtB18H20} subclus-
ters joined via a common platinum vertex. In each case, each
of these subclusters itself  can be viewed as a nido-
platinaundecaboranyl and a nido-decaboranyl subcluster unit
fused with one boron–boron edge in common. The nido-
platinadecaboranyl description implies an η4 platinum-to-
borane bonding mode, with similarities to that in the anions
[M(η4-B10H12)2]

22 (where M is Ni, Pd or Pt)8 and to that in the
neutral species [(PMe2Ph)2PtB10H12].

9 It is, however, much more
similar to the bonding in the macropolyhedrals [(PMe2Ph)2-
Pt(η4-anti-B18H20)] and [(PMe2Ph)2Pt(η4-syn-B18H20)].

10 These
last two compounds have, in addition to the η4-{B4} boron-to-
platinum bonding, close platinum–hydrogen approaches involv-
ing BH(exo) units from the otherwise non-co-ordinated second
subcluster. These forced ‘agostic’ close approaches occur
between the Pt(9) and H(29) atoms, and take values of 3.08(3) Å
in compound 1 and 2.92(3) Å in compound 2.

Interestingly, in both compounds 1 and 2, the intimate juxta-
positioning of the two large {B18H20} subclusters about the
platinum atom results in very severe intramolecular steric
crowding, with interhydrogen contacts between the two {PtB18}
subclusters of H(29)]H(5) 2.58(4), H(39)]H(5) 2.06(4) and
H(39)]H(10) 2.65(5) Å in compound 1, and H(29)]H(5) 2.35(5),
H(59)]H(5) 2.40(5) and H(59)]H(10) 2.66(5) Å in compound 2,
all comparable to or less than a two-hydrogen van der Waals
radius sum of ca. 2.5 Å. This imposes a rigid slab-like structure
on the anions, as in the lozenge-shaped anion of 1 (Fig. 2),

* Crystals of compound 1 were grown by slow mutual diffusion of
C6H14 into a MeCN–Et2O solution at 230 8C and those of compound 2
by slow mutual diffusion of C6H14 into a Me2CO solution at 230 8C.
The data sets were collected at 150(2) K (compound 1) and 160(2) K
(compound 2) on a Stoe STADI-4 diffractometer (Mo-Kα X-radiation,
λ
–

 0.710 73 Å), a semiempirical absorption correction (ψ scans) applied,
and the structures solved by direct methods (SHELXS 86) 4 and refined
(full-matrix least squares on F 2) using SHELXL 93.5 Additional geo-
metric calculations were performed using PARST 96.6

Compound 1: (orange prism, 0.57 × 0.41 × 0.29 mm) C16H80B36N2Pt,
M = 885.1, monoclinic, P21/c, a = 10.5646(9), b = 10.8128(9),
c = 20.3960(13) Å, β = 104.232(6)8, U = 2258.4(3) Å3, Z = 2, Dc = 1.302
Mg m23, µ = 3.127 mm21, F(000) = 896. 5427 Data collected to θmax = 258
(212 < h < 12, 211 < k < 12, 223 < l < 24), of which 3977 were
independent (Rint = 0.0126). Final wR2 = 0.0527, where
wR2 = {Σ[w(Fo

2 2 Fc
2)2]/Σ[w(Fo

2)2]}¹², and conventional R1 = 0.0198 for
3284 reflections with F 2 > 2σ(F 2).

Compound 2: (orange block, 0.40 × 0.35 × 0.30 mm) C28H78B36N4Pt,
M = 1055.2, triclinic, P1̄, a = 10.642(2), b = 11.0560(14), c = 12.2012(13)
Å, α = 88.058(10), β = 84.150(11), γ = 85.995(10)8, U = 1424.0(3) Å3,
Z = 1, Dc = 1.230 Mg m23, µ = 2.492 mm21, F(000) = 532. 5339 Data
collected to θmax = 258 (212 < h < 12, 213 < k < 13, 0 < l < 14), of
which 5034 were independent (Rint = 0.0425). Final wR2 = 0.0652 and
R1 = 0.0263 for 5026 reflections with F 2 > 2σ(F 2). CCDC reference
number 186/607.
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which contrasts with the distinct non-rigidity of more open
single-cluster analogues, such as [(PMe2Ph)2Pt(B10H12)],

9 which
are fluxional in metal-to-borane bonding. This forced close
approach engenders the possibility of intercluster condensation
for more compact macropolyhedral generation via elimination
of sterically squeezed hydrogen-atom pairs, which we plan to
investigate.

A second interesting feature is that these rigid 77-atom
anions stack together very intimately in the solid state. Thus,

Fig. 1 ORTEP-type 3 drawings of the crystallographically determined
structures of (a) the [Pt(anti-B18H20)2]

22 anion in [NEt4]2[Pt(anti-
B18H20)2] 1 and (b) the [Pt(syn-B18H20)2]

22 anion in [Htmnda]2[Pt(syn-
B18H20)2] 2. Each anion has crystallographic inversion symmetry, the
metal atoms being on the inversion centre. Selected interatomic dis-
tances (Å) are: for compound 1; Pt(9)]B(4) 2.248(3), Pt(9)]B(5)
2.230(3), Pt(9)]B(8) 2.416(3), Pt(9)]B(10) 2.290(3), with interboron dis-
tances between 1.746(5) and 2.105(5) for the {PtB10} subcluster, and
between 1.713(5) and 1.937(5) for the {B10} subcluster: for compound 2;
Pt(9)]B(4) 2.225(4), Pt(9)]B(5) 2.230(4), Pt(9)]B(8) 2.323(4) and
Pt(9)]B(10) 2.302(4), with interboron distances between 1.715(6) and
1.980(5) Å for the {PtB10} subcluster and between 1.736(5) and 2.023(5)
for the {B10} subcluster

Fig. 2 A van der Waals radius space-filling drawing 11 of  the rigid
lozenge-like structure of the [Pt(anti-B18H20)2]

22 anion in its [NEt4]
1 salt

(compound 1)

for example, the [Pt(syn-B18H20)2]
22 anions in the salt 2 adopt

an extended two-dimensional double-stack structure (Fig. 3).
The dianions pack in layers parallel to the crystallographic ab
plane [Fig. 3(a)], with the closest interlayer interhydrogen
approach at ca. 5 Å. Within these strata, however, the dianions
approach very closely indeed, to within 2.6 Å between hydro-
gen atom centres, comparable to the van der Waals radius sum
[Fig. 3(b)]. Along the crystallographic a direction, they have a
step-like arrangement with minimum interhydrogen distance
H(99)]H(10) of 2.59(6) Å, whereas along the (a 2 b) diagonal
they contact head-to-tail with H(49)]H(89) 2.74(5) Å, and
along the (a 1 b) diagonal they are in back-to-back contact
with minimum distance H(11)]H(11) of 2.58(6) Å. In supra-
molecular chemistry, there is much current interest in the
understanding and utilisation of molecular associations in con-
densed phases, such as the attractive sequences that engender
[PPh4]

1 cationic layering.12 Intimate anionic layering is classic-
ally recognised in AX2 structures such as that of CdI2,

13 and for
simpler complex anions such as the [PtCl4]

22 dianion in
K2[PtCl4],

14 but as far as we are aware it is not previously rec-
ognised in this type of larger metallaborane cluster. Here the
closest investigated analogue is perhaps the [TTF]1

[TTF = tetrathiafulvalene or 2-(1,3-dithiol-2-ylidene)-1,3-
dithiole] salt of the 45-atom monoanion [Cr(C2B10H10)2]

2,
which has a solid-state structure that can be described in terms
of alternating layers of cations and anions; but in which there
are no close anion–anion contacts.15 For the new, larger type of
metallaborane anions reported here, alternative anionic stack-
ings that may be induced by further variation of counter cat-
ion, and by the use of alternative types of macropolyhedral
molecular assemblies, are currently subject to further investig-
ation.

Fig. 3 Two views 11 of  the stacking of the [Pt(syn-B18H20)2]
22 anion

in its [Htmnda]1 salt (compound 2):  (a) approximately normal to the
ac plane showing three of the anionic layers, which have a ca. 2.5 Å
spacing between them (ca. 5 Å between hydrogen atom centres); and
(b) approximately normal to the ab plane, showing two of the van der
Waals contact double sheets, and the steplike structure in each of
these
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